
Bridgeport Instruments, LLC, 11740 Jollyville Rd., Ste 500, Austin, TX 78759,
www.BridgeportInstruments.com

By Michael Momayezi

Phone 512-553-9933

Fax 512-553-9934

email momayezi
@bridgeportinstruments.com

Common USART Interface
May, 2020

Summary
All BPI product that use an embedded ARM processor share a common serial interface.

Small and embedded computers enjoy easy access to the MCA without complexity and power
consumption of a USB interface.
Using commercial interface hardware, the user can cover long distances using RS485.

 

1. Brief description
We implement a half-duplex serial interface
with software flow control. The
implementation is geared towards the most
restrictive case of a micro-controller that does
not use interrupts. Each transmission is
preceded by sending a single ping-byte to make
sure the receiving side is ready to receive a
command or data. Finally, large data
transmissions are cut into 256-byte chunks so
that the host processor does not need to
implement a big data buffer.

2. Detailed description
2.1 Hardware

In most cases the RX and TX pins are
connected directly to the ARM I/O pins. Hence
the drive strength is limited to 1mA and they
are sensitive to electrostatic discharge. As a
result, cables connecting directly to the MCA
should be interior and shielded cables. Long
cable runs require proper decoupling and
conversion to RS485 or other robust standards.

2.2 Speed

In the current implementation, the default baud
rate is 115200 Bd. Users can change the device
settings to program a different baud rate into
non-volatile memory. The safest method to do
this is to use the USB interface of the MCA,
although it can be achieved via the serial port

as well. The maximum speed supported by the
embedded ARM is 3MBd.

The standard communication setting is 1 start
bit, 8 data bits, 1 stop bit, no parity.

2.3 Protocol

The high level communications protocol is
exactly the same as when using the USB
interface. When using the serial interface on a
small computer such as a Raspberry Pi or an
Arduino, the user would launch the data server
inside the mds_serial folder rather than the
mds_v3 folder. All client software remains
unchanged

When the host computer is a micro-controller,
the generic C-code examples in the examples
folder will prove helpful.

The communication protocol requires that the
host first sends a command of 64 bytes, telling
the MCA what the next action is going to be.
That second action is to either send data to the
MCA or demand data from the MCA.

2.4 Protocol

Each command or data transmission is
prepared by a single-byte ping. Embedded
micro-controllers typically have a 1-byte
receive buffer and can raise a flag if a byte has
been received. On receipt of a ping-byte, the
controller gets ready for the next step, and then
sends an answer byte. In this case the next step

file:///C:/BPI/Documentation/ForPrint/usart_interface/www.BridgeportInstruments.com
file:///C:/BPI/Documentation/ForPrint/usart_interface/www.BridgeportInstruments.com


may be to send a command, or to send or
receive data.

The two flow diagrams below show the
sequence for a write data and a read data
command. Whenever the amount of data to be
transferred is larger than 256 bytes, the
software has to cut that into chunks of 256
bytes, with the last chunk be shorter, if needed.

When reading more than 256 bytes of data, box
no. 3 will be repeated as often as is necessary.
When writing more than 256 bytes of data, box
no. 3 and 4 will be repeated as often as is
necessary.

2.5 Timeout

Successful data transmission requires that the
entire expected sequence of pings, commands
and data transmissions is executed. If the host
abandons a sequence or if an unrecoverable
error occurs, the MCA will reset the USART
interface to its idle state, box (1), 5 seconds
after receiving the first ping.

Low level protocol for reading up to 256 byte of data from
the MCA.

Low level protocol for writing up to 256 byte of data from
the MCA.

3. Software description
The mds_serial/embedded_c folder contains a
very simple API that is suitable for embedded
32-bit micro-controllers. For test and
debugging purposes, the serial interface is
implemented in a POSIX compliant manner,
and it was tested on a Raspberry Pi 3. The
software stack consists of three layers:

mca1k_api.c implements the high-level read,
write, and read-modify-write functions, plus
a number of convenience functions for easy
access to all data in the MCA.
bpi_device.c implements the driver,
including the flow-control protocol.
Pi3_serial.c has the hardware-dependent
serial I/O code.

3.1 mca1k_api.c

This level implements the three main functions
a user would use to communicate with the
MCA: read, write, and read-modify-write. The
user specifies the MCA data of interest, such as
arm_ctrl or arm_histo and then calls the
appropriate function.

Beyond the three core communications
functions, this level provides a number of
convenience functions that cover all relevant
cases of reading, writing or modifying MCA
data arrays.

There is a single data structure, mca_command,
that controls the communication. It is defined
in mca1k_api.h



Given the limited data stack size in a micro-
controller environment, all functions are being
passed a pointer an mca_command structure.
The functions are written such that user code
needs to only provide memory for one such
structure.

Finally, the mca_command structure does not
contain any data arrays. Instead, it only
contains pointers to all data arrays. This
ensures that users can align the actual data
arrays on 4-byte to 16-byte boundaries, or
place them in certain memory segments, as the
hardware may require; eg for direct memory
access.

In all data exchanges, the LSB is transmitted
first. Communication between two little-endian
processors will always be correct for all data
formats, such as uint16_t, uint32_t or float.

3.1.1 mca_write(struct mca_command
*mca_cmd)

Write data to a specific MCA data array.

3.1.2 mca_read(struct mca_command
*mca_cmd)

Read data from a specific MCA data array.

3.1.3 mca_rmw(struct mca_command
*mca_cmd)

Read-modify-write data from a specific MCA
data array. First, the function reads the MCA
data into either mca_cmd.u_data (for uint32_t)
or mca_cmd.f_data (for float), depending on
the requested MCA data type. Replacement
data are stored in mca_cmd.replace_u_data or
mca_cmd.replace_f_data, again depending on
whether the MCA data array consists of
uint32_t or float data. The global array
replace_idx contains the array index in u_data
or f_data indicating which original data should
be overwritten by the replacement data. After
updating the data array, it is written back to the
MCA.

Here is an example to change the operating
voltage to 34.5V. In the arm_ctrl array, the
requested operating voltage is stored at the
offset AC_CAL_OV. Hence, replace_idx[0] =
AC_CAL_OV; and replace_data[0]=34.5; Then
call mca_rmw(mca_cmd).

3.2 bpi_device.c

This intermediate layer implements the
communications protocol in just two functions:
one to write a block and one to read a block. It
implements the flow control, which requires
that any transmission of block data, in either
direction, must be preceded by a ping.

The sending side first sends a single-byte ping
and waits for the receiver to answer back with
a single byte. Once the answer has been
received, the sending side can be sure that the
receiver is ready to receive the expected
number of bytes.

3.2.1 bpi_write_buffer(uint32_t *pSrc, uint32_t
num_bytes)

Write data, from pSrc to the MCA. If more
than 256 bytes need to be transmitted, this
functions will send the data in chunks of 256
bytes. For every chunk it obeys the flow
control protocol and uses the ping-mechanism.
The last chunk may be smaller than 256 bytes.

3.2.2 bpi_read_buffer(uint32_t *pDst, uint32_t
num_bytes)

Read data from the MCA and copy into the
memory pDST. If more than 256 bytes need to
be transmitted, this functions will receive the
data in chunks of 256 bytes. For every chunk it
obeys the flow control protocol and uses the
ping-mechanism. The last chunk may be
smaller than 256 bytes.

3.3 Pi3_serial.c

This is the hardware interface to the serial port.
It consists of 5 functions to control and operate
the serial interface. The provided functions are
POSIX compliant and will run a typical Linux
computer, with the appropriate choice for the
serial port, such as "/dev/serial0". On a micro-
controller, these functions have to be rewritten
for the interface in use.

3.3.1 bpi_serial_init()

It programs the serial interface to be non-
canonic, ie to be used for binary data transfer.
It uses 1 start bit, 8 data bits, 1 stop bit, no
parity.

By default the baud rate is set to 115200, as
encoded by the constant B115200. Possible
low-speed baud rate constants are B50, B75,
B110, B134, B150, B200, B300, B600, B1200,
B1800, B2400, B4800, B9600, B19200,
B38400. The high-speed constants are:



 

B57600, B115200, B230400, B460800,
B500000, B576000, B921600, B1000000,
B1152000, B1500000, B2000000, B2500000,
B3000000, B3500000, B4000000.

MCAs with an Atmel SAML21 can support
baud rates between 19200 and 3000000
(3MBd). The baud rate is not negotiable. It is
either fixed in the ARM firmware or can be set
via the AC_BAUD register (or the "baud"
field) in the arm_ctrl data array. Users wanting
to use a baud rate different from the 115200Bd
default, are advised to use the USB interface to
write the baud rate field into non-volatile
memory. The USB interface is not affected by
this setting, so it is easy to check that the write
was successful.

If the baud rate is changed by the host, it will
take effect only after a reboot of the MCA.
This avoids loss of communication should a
regular update of the ARM control registers
(arm_ctrl) fail.

3.3.2 bpi_serial_write(uint8_t *p8_Src, uint32_t
num_bytes)

This functions takes a pointer to the data buffer
and the number of bytes to transmit as its input
parameters. The function sends data without
delay or hardware/software flow control.

3.3.3 bpi_serial_read(uint8_t *p8_Src, uint32_t
num_bytes)

This functions takes a pointer to the data buffer
and the number of bytes to read as its input
parameters. The serial interface is set up to
perform non-blocking reads. Hence the
function polls until the requested number of
bytes have been received. In its most simple
implementation, it polls until all data have
arrived, and thus implements a blocking read.

3.3.4 bpi_serial_reset_input_buffer()

This functions empties the input buffer to avoid
reading unwanted data. On an embedded
micro-controller, it may not be necessary.

3.3.5 bpi_serial_reset_output_buffer()

This functions empties the output buffer to
avoid sending unwanted data. On an embedded
micro-controller, it may not be necessary.

bpi_mca_common_usart_v2.pdf© Bridgeport Instruments, LLC, 2020-02-10 


